Back to News & Media
Tuesday, August 30, 2016

Processing Blood with Ultrasound Waves Can Potentially Treat 80-Plus Diseases

Draper and Brigham and Women’s Hospital Collaborate on Solution to Improve Blood Treatments

CAMBRIDGE, MA – Patients with cancer, sickle cell or autoimmune disease, among other illnesses, require specialized blood treatments such as apheresis, which have traditionally involved large, cumbersome centrifuge machines that separate blood to separate out problematic components. This invasive process often creates a lengthy and exhausting experience for the patient.

Draper and Brigham and Women’s Hospital (BWH) researchers have developed a smaller, more efficient apheresis method to remove blood from the patient’s body, separate it into components, remove diseased cells or plasma and return the healthy blood to the patient. Draper’s technology uses ultrasound implemented on a microfluidic chip to separate diseased blood components from healthy ones before returning the cleaned blood to the body. Draper is the first company to separate blood using acoustics on a safe, cost-effective, disposable plastic device.

“Existing methods are very disruptive to the patient, costly and time-consuming,” explained Jason Fiering, principal engineer at Draper. “Each procedure can take 4-5 hours with and the treatment often has to be repeated several times.”

“Clinicians have grown accustomed to the limitation of current apheresis technology,” said Dr. William Savage, Medical Director of Apheresis in the BWH Department of Pathology. “Our goal is to demonstrate how this new approach to apheresis can improve care.”

Current blood cell separation methods are especially problematic for children, particularly infants, because the machines take a lot of blood out of the patient at one time. “Newborns can’t tolerate the volume of blood removed,” said Fiering. “Draper’s solution overcomes that problem—reducing the amount of blood volume removed from the body at one time by up to 80 percent—in turn providing clinicians with a broader array of therapeutic options for treating infants.”

Draper invested roughly two years of independent research and development on the acoustic apheresis technology before partnering with researchers and clinicians from BWH. The device has potential applicability to more than 80 diseases, ranging from leukemia to lupus.

Recently, the device was one of two projects to receive a grant from the BWH Health and Technology Innovation Fund, because of its potential for near term impact on patients.

Savage is working with Draper on ways to continue to advance the technology to improve blood treatments. Currently, the functionality has been demonstrated as a single module, which enables blood to flow at a small scale. With the grant funding, Savage and Draper will be able to design and test a multichannel device to achieve the blood flow rates needed for pediatric therapy.

“The goal of the lab testing was to demonstrate acoustic separation of whole blood, and the technology achieved a 98 percent separation efficiency of cells from plasma,” said Fiering. “During the next phase of the project, our goal is to scale up to process a greater volume of blood with the technology handling more throughput with multiple channels on a device. We believe this technology will improve patient safety and reduce apheresis costs.”

The apheresis platform separates specific components in blood as desired by health care providers.
Capabilities Used
Microsystems

Draper has designed and developed microelectronic components and systems going back to the mid-1980s. Our integrated, ultra-high density (iUHD) modules of heterogeneous components feature system functionality in the smallest form factor possible through integration of commercial-off-the-shelf (COTS) technology with Draper-developed custom packaging and interconnect technology. Draper continues to pioneer custom Microelectromechanical Systems (MEMS), Application-Specific Integrated Circuits (ASICs) and custom radio frequency components for both commercial (microfluidic platforms organ assist, drug development, etc.) and government (miniaturized data collection, new sensors, Micro-sats, etc.) applications.  Draper features a complete in-house iUHD and MEMS fabrication capability and has existing relationships with many other MEMS and microelectronics fabrication facilities. 

Biomedical Solutions

Draper’s Biomedical Solutions capability centers on the application of microsystems, miniaturized electronics, computational modeling, algorithm development and image and data analytics applied to a range of challenges in healthcare and related fields. Draper fills that critical engineering niche that is required to take research or critical requirements and prototype or manufacture realizable solutions.  Some specific examples are MEMS, microfluidics and nanostructuring applied to the development of wearable and implantable medical devices, organ-assist devices and drug-delivery systems. Novel neural interfaces for prosthetics and for treatment of neurological conditions are being realized through a combination of integrated miniaturized electronics and microfabrication technologies.

Materials Engineering & Microfabrication

Draper continues to develop its expertise in designing, characterizing and processing materials at the macro-, micro- and nanoscales. Understanding the physical properties and behaviors of materials at these various scales is vital to exploit them successfully in designing components or systems. This enables the development and integration of biomaterials, 3D printing and additive manufacturing, wafer fabrication, chemical and electrochemical materials and structural materials for application to system-level solutions required of government and commercial sponsors.

Media Contact

Media Relations

Contact Info: 
Strategic Communication

Media Relations

P: 
617-258-2464
C: 
617-429-2883