Back to News & Media
Friday, June 3, 2016

Navy Honors Draper Engineer with FBM Lifetime Achievement Award

Sanford Cohen’s work led to improved strategic deterrent

CAMBRIDGE, MA – U.S. missiles need a high degree of accuracy and reliability to ensure that they will perform as needed if they are to offer a credible strategic deterrent. This challenge includes operating autonomously through harsh environments including shock, vibration and radiation.
The U.S. Navy posthumously honored Sanford Cohen, who helped the service address these challenges as he oversaw the design and development of its MARK 6 guidance system as a senior leader at Draper, with its Fleet Ballistic Missile (FBM) Lifetime Achievement Award during a June 2 ceremony at the Washington Navy Yard.

According to a Navy statement, the FBM Lifetime Achievement Award recognizes industry partners who have demonstrated “technical brilliance, innovation, and expertise in their field,” and Cohen’s work played a fundamental role in providing the United States with a credible and affordable sea-based strategic deterrent.

“Sandy truly was instrumental by contributing to our Nation’s strategic deterrent mission,” said Vice Adm. Terry Benedict, the Navy’s director of strategic systems programs.

Cohen, whose Draper career spanned 29 years, is credited with developing key aspects of the guidance system that enables the Trident missile to operate without access to external navigation signals and through harsh radiation environments. Following his retirement from Draper, he consulted with the company on the Trident program until his death at 77 years old on Feb. 27.

“During his career at Draper, he built a highly capable organization that designs guidance systems, builds instruments and oversees the team assembling the system,” said Steven DiTullio, Draper’s vice president for strategic programs. “He was fundamental in advancing the use of new technologies, specifically in the area of radiation-hardened electronics, resulting in increased capabilities and significantly lower costs in the guidance system. He covered everything including part tooling, manufacturing, and in-process testing, culminating in final acceptance of the technology aboard the submarines.”

Following Cohen’s efforts to help build a highly capable organization for the design of the MARK 6, Draper has continued to support the Navy’s work in this area, and today serves as the prime contractor for the Trident Life Extension boost guidance effort, where it has begun production of an upgraded guidance system that will be used through 2040.

Sanford Cohen
Capabilities Used
Positioning, Navigation & Timing (PNT)

Draper develops novel PN&T solutions by combining precision instrumentation, advanced hardware technology, comprehensive algorithm and software development skills, and unique infrastructure and test resources to deploy system solutions. The scope of these efforts generally focuses on guidance, navigation, and control GN&C-related needs, ranging from highly accurate, inertial solutions for (ICBMs) and inertial/stellar solutions for SLBMs, to integrated Inertial Navigation System(INS)/GPS solutions for gun-fired munitions, to multisensor configurations for soldier navigation in GPS-challenged environments. Emerging technologies under development that leverage and advance commercial technology offerings include celestial navigation (compact star cameras), inertial navigation (MEMS, cold atom sensors), precision time transfer (precision optics, chip-scale atomic clocks) and vision-based navigation (cell phone cameras, combinatorial signal processing algorithms).

Autonomous Systems

Draper combines mission planning, PN&T, situational awareness, and novel GN&C designs to develop and deploy autonomous platforms for ground, air, sea and undersea needs. These systems range in complexity from human-in-the-loop to systems that operate without any human intervention. The design of these systems generally involves decomposing the mission needs into sets of scenarios that result in trade studies that lead to an optimized solution with key performance requirements.  Draper continues to advance the field of autonomy through research in the areas of mission planning, sensing and perception, mobility, learning, real-time performance evaluation and human trust in autonomous systems.

Precision Instrumentation

Draper develops precision instrumentation systems that exceed the state-of-the-art in key parameters (input range, accuracy, stability, bandwidth, ruggedness, etc.) that are designed specifically to operate in our sponsor’s most challenging environments (high shock, high temperature, radiation, etc.).  As a recognized leader in the development and application of precision instrumentation solutions for platforms ranging from missiles to people to micro-Unmanned Aerial Vehicles (UAVs), Draper finds or develops state-of-the-art components (gyros, accelerometers, magnetometers, precision clocks, optical systems, etc.) that meet the demanding size, weight, power and cost needs of our sponsors and applies extensive system design capabilities consisting of modeling, mechanical and electrical design, packaging and development-level testing to realize instrumentation solutions that meet these critical and demanding needs.

Fault-Tolerant Systems

Draper has developed mission-critical fault-tolerant systems for more than four decades. These systems are deployed in space, air, and undersea platforms that require extremely high reliability to accomplish challenging missions. These solutions incorporate robust hardware and software partitioning to achieve fault detection, identification and reconfiguration. Physical redundancy or multiple, identical designs protect against random hardware failures and employ rigor in evaluating differences in computed results to achieve exact consensus, even in the presence of faults. The latest designs leverage cost-effective, multicore commercial processors to implement software-based redundancy management systems in compact single-board layouts that perform the key timing, communication, synchronization and voting algorithm functions needed to maintain seamless operation after one, two or three arbitrary faults of individual components.

Human-Centered Solutions

Draper has continued to advance the understanding and application of human-centered engineering to optimize the interaction and capabilities of the human’s ability to better understand, assimilate and convey information for critical decisions and tasks. Through its Human-Centered Solutions capability, Draper enables accomplishment of users’ most critical missions by seamlessly integrating technology into a user’s workflow. This work leverages human-computer interaction through emerging findings in applied psychophysiology and cognitive neuroscience. Draper has deep skills in the design, development, and deployment of systems to support cognition – for users seated at desks, on the move with mobile devices or maneuvering in the cockpit of vehicles – and collaboration across human-human and human-autonomous teams.

Media Contact

Media Relations

Contact Info: 
Strategic Communication

Media Relations