Back to News & Media
Friday, November 17, 2017

Sierra Nevada Corporation's Dream Chaser® Spacecraft Glides to Runway Landing in Successful Drop Test

CAMBRIDGE, MA—Sierra Nevada Corporation conducted a successful glide and landing test flight with its Dream Chaser spacecraft on Saturday, November 11. The unmanned craft is designed to launch atop a rocket and shuttle cargo and supplies to the International Space Station, and then return to land on a runway with experiments and samples from the space station.

The spaceplane was carried to an altitude of 12,324 feet by a helicopter above the Mojave Desert and then dropped to glide to the ground and land on a runway at Edwards Air Force Base. Unlike other spacecraft, Dream Chaser has wings and wheels that allow it to land on a runway.

Saturday’s test helped to validate elements of the flight software and the flight control computer designed by Draper, and the spacecraft’s handling and performance characteristics during landing. For the Dream Chaser, Draper is developing a four-channel fault-tolerant flight computer equipped with redundancy management, guidance and navigation control, and fault detection and isolation.

Draper and Sierra Nevada Corporation have worked together for more than 10 years. Recently the two companies signed a memorandum of understanding (MOU) that sets a course for them to jointly explore development of space technologies, applications and missions related to SNC’s Dream Chaser spacecraft.

In its initial mission, the spacecraft will deliver NASA cargo to the International Space Station under NASA’s Commercial Resupply Services (CRS2) contract. The company is under contract from NASA to fly its Dream Chaser spaceplane to the International Space Station around 2020.

Sierra Nevada Corporation's (SNC) Dream Chaser spacecraft had a successful free-flight test on November 11, 2017 at Edwards Air Force Base, with support of NASA’s Armstrong Flight Research Center. Credit: NASA Credit: NASA Credit: NASA Credit: NASA
Capabilities Used
Positioning, Navigation & Timing (PNT)

Draper develops novel PN&T solutions by combining precision instrumentation, advanced hardware technology, comprehensive algorithm and software development skills, and unique infrastructure and test resources to deploy system solutions. The scope of these efforts generally focuses on guidance, navigation, and control GN&C-related needs, ranging from highly accurate, inertial solutions for (ICBMs) and inertial/stellar solutions for SLBMs, to integrated Inertial Navigation System(INS)/GPS solutions for gun-fired munitions, to multisensor configurations for soldier navigation in GPS-challenged environments. Emerging technologies under development that leverage and advance commercial technology offerings include celestial navigation (compact star cameras), inertial navigation (MEMS, cold atom sensors), precision time transfer (precision optics, chip-scale atomic clocks) and vision-based navigation (cell phone cameras, combinatorial signal processing algorithms).

Autonomous Systems

Draper combines mission planning, PN&T, situational awareness, and novel GN&C designs to develop and deploy autonomous platforms for ground, air, sea and undersea needs. These systems range in complexity from human-in-the-loop to systems that operate without any human intervention. The design of these systems generally involves decomposing the mission needs into sets of scenarios that result in trade studies that lead to an optimized solution with key performance requirements.  Draper continues to advance the field of autonomy through research in the areas of mission planning, sensing and perception, mobility, learning, real-time performance evaluation and human trust in autonomous systems.

Precision Instrumentation

Draper develops precision instrumentation systems that exceed the state-of-the-art in key parameters (input range, accuracy, stability, bandwidth, ruggedness, etc.) that are designed specifically to operate in our sponsor’s most challenging environments (high shock, high temperature, radiation, etc.).  As a recognized leader in the development and application of precision instrumentation solutions for platforms ranging from missiles to people to micro-Unmanned Aerial Vehicles (UAVs), Draper finds or develops state-of-the-art components (gyros, accelerometers, magnetometers, precision clocks, optical systems, etc.) that meet the demanding size, weight, power and cost needs of our sponsors and applies extensive system design capabilities consisting of modeling, mechanical and electrical design, packaging and development-level testing to realize instrumentation solutions that meet these critical and demanding needs.

Fault-Tolerant Systems

Draper has developed mission-critical fault-tolerant systems for more than four decades. These systems are deployed in space, air, and undersea platforms that require extremely high reliability to accomplish challenging missions. These solutions incorporate robust hardware and software partitioning to achieve fault detection, identification and reconfiguration. Physical redundancy or multiple, identical designs protect against random hardware failures and employ rigor in evaluating differences in computed results to achieve exact consensus, even in the presence of faults. The latest designs leverage cost-effective, multicore commercial processors to implement software-based redundancy management systems in compact single-board layouts that perform the key timing, communication, synchronization and voting algorithm functions needed to maintain seamless operation after one, two or three arbitrary faults of individual components.

Media Contact

Media Relations

Contact Info: 
Strategic Communication

Media Relations